Feb 28 2025

Planet Formation

Eugene Chiang Berkeley Astronomy & EPS

2017 Total Solar Eclipse

2012 Venus Transit

Transit method for detecting exoplanets

"light curve"

AQUILA

DELPHINUS

177

CYGNUS

Deneb

BRIGHTNESS

Photometer Sun shade Solar Array Reaction Wheels (4) Radiator High Gain Antenna Solid State Omni-antenna Recorde (1 of 2) Avionics Star Trackers (2) (redundant)

TIME IN HOURS

NASA Kepler Space Telescope 2009-2018

permanent night 50 °K (-370 °F)

permanent day 1800 °K (2800 °F)

tidally locked

Magma ocean exoplanet = Early Earth?

"Eta Earth"

Fraction of Sun-like stars with Earth-like planets on Earth-like orbits

10-20% (Bergsten+22) cf. 6-22% (Petigura+13)

technically an extrapolation from Kepler data

Milky Way Galaxy

Number of stars ~ 200 billion and more planets

Rotation period at Sun's location ≈ 250 million yr

~24000 light-years

Sun

WE ARE HERE

The Milky Way Galaxy (actually)

Max Planck Institute for Chemistry

Stars form in interstellar clouds (~I-I00 light-years in size)

Daniel Price and Christoph Federrath (2010)

Stars form in interstellar clouds (~I-I00 light-years in size)

Daniel Price and Christoph Federrath (2010)

Panorama of the Carina Nebula 🕑 HUB

~0.5 light-year

Circumstellar disks

~100 AU (~10 light-hours) Protoplanetary Disks Orion Nebula HST · WFPC2

PRC95-45b · ST Scl OPO · November 20, 1995 M. J. McCaughrean (MPIA), C. R. O'Dell (Rice University), NASA

Atacama Large Millimeter Array

Sticky particles

Energy balance + Hertz's law of contact

$$v_{
m stick} \sim rac{\gamma^{5/6}}{E^{1/3}
ho^{1/2} s^{5/6}}$$

 $\sim 0.1 \text{ cm/s}$ for $s \sim 1 \text{ mm}$

Sticking up to, but not beyond, cm sizes

CHONDRITIC METEORITES

- 0.1-1 mm igneous spheres
- > 30% volume fraction
- near-solar composition
- 4.562-4.567 Gyr old

COMPLETE SLICE OF THE SINGULAR GUJBA METEORITE

I Myr

100 Myr

10 Gyr

Formation of the Moon: the last giant impact

SwRI/Canup

Moon is 4.51 Gyr old CAIs (oldest meteorites) are 4.56 Gyr old ("t=0")

... Moon-forming impact occurred 4.56 - 4.51 Gyr \simeq 0.05 Gyr \simeq 50 Myr after CAIs

