Evolutionary Ecology Research, 2002, 4: 811-841

Effects of Oligo-Miocene global climate changes on
mammalian species richness in the northwestern
quarter of the USA

Anthony D. Barnosky* and Marc A. Carrasco

Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley,
CA 94720, USA

ABSTRACT

We derived species richness curves using three different methods for mammal species recorded
in fossil deposits between 30 million and 9 million years old (late Oligocene through late
Miocene) for three geographic regions in the USA: the Northwest, northern Rocky Mountains
and northern Great Plains. The data were used to examine the relationship between global
climate change and species richness at the regional scale. Our goal was to test the hypothesis
that geographic scaling issues account for the lack of correlation that has been observed between
continental species richness and the oxygen—isotope curve. The results of all three methods
used in this study suggest that species richness in the three regions analysed did not change in
response to the global temperature signal, supporting the inferences drawn from continental-
scale analyses. The most prominent signal is a peak in species richness in the Rocky Mountain
region about 15 million years ago, possibly due to increased beta diversity within the
mountains, although many of these species were shared between all three biogeographic
provinces. This peak coincides with the Mid-Miocene Climatic Optimum, but it appears
unlikely that global temperature change was the direct cause because no response in species
richness characterized the even greater Late Oligocene Warming. The Mid-Miocene richness
peak also closely follows the onset of major tectonic events in the Rocky Mountain region,
which may have led to increased within-province endemism through a combination of physio-
graphic and related climatic effects not recorded in the global temperature signal, a hypothesis
that deserves detailed testing.
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INTRODUCTION

Many workers have discussed the effect of climate change on species richness patterns
through geological time (see, for example, citations in Rosenzweig, 1995). For mammals,
assessing this effect has remained elusive, with some workers claiming global changes in
climate have little influence on species richness (most recently, Alroy ez al., 2000) and others
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inferring that climate changes profoundly affect species richness patterns (for example, Janis
et al., 2000; Barnosky, 2001). Recent work has suggested that scaling issues are at the heart
of different interpretations about how global climate change affects mammalian species
richness (Barnosky, 2001). Briefly stated, the scaling argument posits that studies lumping
data from several different climatic zones spread over large continents will always show no
response to global climate change. This is because global changes manifest in different
directions from region to region, as documented by general circulation models and modern
weather observations (National Assessment Synthesis Team, 2001). On the other hand, data
compiled from single climatic zones have the potential of revealing a biotic response to
global climate changes, because all of the species within the single climate zone experience
the same effect of the global climate change, whether or not it is in the same direction as the
global mean.

Here we test whether geographic scaling issues explain an apparent absence of correlation
between species diversity of mammals in the conterminous United States and global
temperature change inferred from the oxygen-isotope curve (Alroy et al., 2000). In general,
the data reported here support the lack of correlation. For the data set analysed, the biggest
increases in mammalian species richness came not with the biggest warming event recorded
in the oxygen-isotope curve, but with the onset of a tectonic event that geographically
fragmented the landscape. However, complicating the interpretation is the fact that different
assumptions about the data lead to markedly different interpretations about species
richness, highlighting the need for critical evaluation of both field relationships and
statistical techniques in deriving species richness estimates from palaeontological data sets.

METHODS

The temporal focus of this study was on the late Oligocene through the late Miocene
(30 to 9 million years ago) encompassing the Arikareean through the Clarendonian North
American Land Mammal Ages. The oxygen—isotope curve compiled by Zachos et al. (2001)
provided a proxy of global climate change (Fig. 1). We deemed this proxy to be the most
suitable for our purpose of assessing the globally averaged temperature signal because the
curve of Zachos et al. used information from at least 42 DSDP and ODP cores distributed
through the Atlantic (18 cores), Pacific (14 cores) and Indian (10 cores) Oceans. The
oxygen—isotope curve records a signal of global temperature change and global ice volume.
For the purposes of this paper, the relative temperature scales of Zachos et al. (2001) and
Miller et al. (1987) were accepted, both of which suggest a 4°C change in global temperature
for every 1%o change in 8'°0, although interpretations of absolute temperature vary with
ice volume. The isotope record shows two global warming events: one spanning 27 to
24 million years (Late Oligocene Warming) and one of slightly longer duration but of lower
magnitude from about 18 to 14 million years (Mid-Miocene Climatic Optimum, also known
as the late-Early Miocene Climatic Optimum in earlier papers). These warming events
indicated by the curve of Zachos et al. also appear in other syntheses of oxygen—isotope
data (see, for example, Miller et al, 1987) as well as in individual cores with high
stratigraphic resolution from different parts of the world (see, for example, Miller and
Fairbanks, 1985; Mutti, 2000).

Changes in Oligo-Miocene species richness were calculated for three different geographic
regions in the northwestern United States: the Northwest, the northern Rocky Mountains
and the northern Great Plains (NW, MT and PL in Fig. 2). Today, these regions roughly
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Fig. 1. Time scale (Woodburne and Swisher, 1995) and oxygen-isotope curve (redrawn from Zachos
et al., 2001) used in this study. The species richness curve is the composite for all localities, with
richness expressed as species per million years. The temperature scale indicates magnitude of change,
not temperature reconstructions.

correspond to distinct biogeographic zones that can be defined solely on mammalian species
composition: the Columbian (corresponding with NW in Fig. 2), Coloradan (MT) and
Kansan (PL) (Hagmeier and Stults, 1964; Hagmeier, 1966). All of the fossil data discussed
here occur within one of these three modern biogeographic provinces. The modern
mammalian provinces generally correspond with vegetational zones, which, in turn,
are linked to climatic parameters and physiographic features (Lugo et al, 1999).
Although exact boundaries and similarity indices between biogeographic provinces have
undoubtedly changed through time, the Northwest, northern Rocky Mountains and
northern Great Plains apparently were distinct biogeographic regions for mammals
through much of the Cenozoic (Tedford et al., 1987; Storer, 1989; FAUNMAP Working
Group, 1996).

Climate models for assessing pertinent regional differences in Oligo-Miocene climatic
parameters do not yet exist. However, general circulation models predict how the modern
geographic regions would respond to global climate change, and we examined two of these
models to obtain a general sense of whether similarities or differences in specific response
among regions might be expected even in the Oligo-Miocene. To assess the range of
possibilities, we examined the Hadley Centre and Canadian Climate Centre climate models
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Fig. 2. Boundaries of the biogeographic provinces used for each land mammal age, and location
of the specific collecting areas (indicated by numbers) used for the bootstrapping analyses in Figs 6
and 7. Abbreviations: NW, Northwest; MT, northern Rocky Mountains; PL, Northern Plains.
These roughly correspond to Hagmeier’s (1966) Columbian, Coloradan and Kansan mammal
biogeographic provinces, respectively. Collecting areas used for bootstrapping analyses are identified
by the following numbers: 1, Lower Cabbage Patch Beds: 2, Upper Cabbage Patch Beds; 3, Peterson
Creek; 4, Sharps; 5, Monroe Creek; 6, Split Rock; 7, Sheep Creek; 8, Colter; 9, Hepburn’s Mesa;
10, E. Norden Reservoir; 11, Olcott. Base maps modified from Sterner (1995).
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for effects of a 1% per year increase in greenhouse gases from 2000 to 2100 on average
annual temperature, July heat index, summer maximum and winter minimum temperature
change, annual precipitation change and summer soil moisture (National Assessment
Synthesis Team, 2001). We emphasize that the predictions for climate change in the existing
geographic regions are not strictly analogous to what would be expected in the Oligo-
Miocene, because ice-sheet configurations, continental elevations, position of Antarctica
and, possibly, oceanic circulation patterns are different today. Nevertheless, the models for
the modern landscape are useful in determining whether the three regions are geographic-
ally close enough (as they were in the Oligo-Miocene) to share some important local
responses to a global warming event, or whether markedly different regional responses
might be expected.

In general, both models predict that, in response to the stipulated increase in carbon
dioxide, the conterminous United States will warm on average between ~2.2°C (4°F) and
~5°C (9°F). All three of the geographic areas of interest are expected to share the following
responses: warming of mean annual temperature by 2.7°C (5°F) to 6.7°C (12°F) (temper-
atures may warm more in the Mountains and northern Plains than the Northwest) and
increasing summer maximum temperature by 3°C (5°F) to 6°C (10°F). Potential differences
in the way the three regions would respond, seen primarily in the Canadian Model, include:
considerably higher (up to 6°C) winter minimum temperatures in the Mountains and Plains
than in the Northwest, decreased annual precipitation in the northern Plains (by nearly
20%) versus increased precipitation in the other two regions (by up to 40%), and a greater
change in the July heat index in the northern Plains (4°C to 8°C higher). The outlook for
summer soil moisture is unclear, as the Canadian and Hadley models present different
results.

In general, the two models suggest a mostly similar response to global warming in
the three regions (increased annual temperature, increased July maxima and January
minima, and increase in the July heat index). Because these three regions were similarly
proximal even in the Oligo-Miocene, we assume their generally similar climatic response
would have held true then as well. Certainly, however, the exact nature and magnitude
of the responses would have been different than today’s, given the several differences
in boundary conditions. Under this scenario, it would be reasonable to expect parallel
changes in species richness as a result of Oligo-Miocene global warming events in the
three geographic regions. However, the models for the existing landscape also high-
light some possibilities for differential response, notably less winter warming in the
Northwest compared to the other two regions, and a considerable increase in the July
heat index and decrease in precipitation in the northern Plains. Therefore, the species
richness data were also examined to detect discrepancies between the patterns in these
three regions.

Estimating species richness began with searching the primary literature (including
doctoral dissertations) to identify all reported species occurrences represented by voucher
specimens between 30 and 9 million years ago. These include all published information from
localities in Washington, Oregon, Idaho, Montana, Wyoming, North Dakota and South
Dakota, as well as most published records from Nebraska. Where possible, supplementary
specimen information was acquired from online museum databases. For the northern
Rockies region, unpublished identified Carnegie Museum specimens from Hepburn’s Mesa,
Montana, also were utilized. Taxonomy was updated and standardized to conform
to McKenna and Bell (1997) for ranks above the genus level and to the latest published
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literature for genus and species. The resulting data set includes 721 localities and at least 719
species (Appendix 1).

Species occurrences were entered into a Paradox database that included information
about the following attributes: absolute age, relative age, geologic occurrence, taphonomy
and literature citations (Barnosky and Carrasco, 2001). The associated absolute and relative
age data were used to assign each species occurrence to one of the following biochronologic
intervals: Arikareean (Ar) 1, Ar2, Ar3, Ar4; Hemingfordian (He) 1, He2&3; Barstovian
(Ba) 1, Ba2, Ba3; Clarendonian (CI) 1, C12 (Woodburne and Swisher, 1995) (Fig. 1). Lack of
chronologic resolution required fossils from He2 and He3 to be combined for this study, an
appropriate procedure because the temporal interval for the lumped He2&3 is as short or
shorter than that of most of the other temporal intervals (Fig. 1). Our Cll equates with
Woodburne and Swisher’s Cl1 plus CI2, and our CI2 equals their CI3; this deviation arose
because Woodburne and Swisher did not designate a boundary between their Cl1 and CI2,
so we regarded them as a single biochronological interval. The advantage of the temporal
sorting technique was that the age of each locality was evaluated independently using
all available geological and biochronological information. Thus there was a high level of
confidence that species occurrences were correctly placed within given age intervals. The
disadvantage was that it was impossible to sort specimens into very fine, evenly spaced time
intervals.

The numerical ages of both the mammal deposits and the oxygen—isotope curve used in
this study were ultimately derived by correlation to the standard geomagnetic polarity time
scale (Berggren et al., 1995). Zachos et al. (2001) reviewed the age models of each of the
cores used in their derivation of the oxygen-isotope curve and updated ages as necessary.
We also updated as necessary assignments of biostratigraphic age for each of the mammal
localities and used the most recent synthetic correlations of the land-mammal ages to the
geomagnetic polarity time scale (Woodburne and Swisher, 1995; Berggren et al., 1995).
Thus, there is internal consistency of using the best available information for each of the
two data sets and tying numerical ages to a common time scale. However, correlations
between marine and terrestrial deposits are notably circuitous, and the sampling intervals
for the marine cores are clearly much finer than is possible for terrestrial deposits. In fact,
the mammal species richness values obtained for each biostratigraphic interval represent
a time-averaged sample over a million or more years (i.e. the length of the particular
biostratigraphic interval). We assume that this time-averaging of the mammal signal
does not substantially affect comparisons to the oxygen-isotope curve for most of the
biostratigraphic intervals, because the oxygen-isotope curve does not change dramat-
ically within those intervals. Exceptions are Ar2, within which the Late Oligocene
Warming is contained, and Ba2, which contains the transition from the Mid-Miocene
Climatic Optimum towards cool global temperatures that characterized the rest of
the Cenozoic. Aliasing effects — that is, obscuring the true relationship between two time
series by sampling each at different time intervals — could be important in these two
biochronological zones. We explore those ramifications further in appropriate parts of
the Discussion.

Species richness was first estimated by standardizing the number of species in each inter-
val to species per million years (the quotient of how many species are present in each
interval divided by the length of the interval) to correct for biases introduced by differing
interval lengths as discussed by Alroy (2000) and Barnosky (2001). Because interval length
may not be an accurate proxy for preservation within a time interval, species richness was
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also estimated by standardizing the number of species in each interval to species per locality
(the quotient of how many species are present in each interval divided by the total number
of localities within each interval). Both of these methods yielded estimates for total species
richness within and across the large biogeographic regions of focus. A third procedure was
used to estimate diversity of discrete, relatively small areas within the larger biogeographic
regions. This began with tabulating the numbers of identified specimens (NISP) that were
collected at geographically and stratigraphically discrete localities. The NISP was con-
sidered an estimate of the number of individuals, and the composite assemblages of fossils
from one locality (such as one lens within the Hepburn’s Mesa Formation) were considered
samples. The samples from each general collecting area (for example, the entire Hepburn’s
Mesa Formation) were successively pooled to build a species accumulation curve using the
bootstrapping algorithms of Colwell (1997). Various problems arise from applying fossil
data to the Colwell algorithms and are discussed in more detail in the Discussion. Because
many of the Northwest localities lacked published specimen data, only the northern
Rockies and the Plains yielded data amenable to bootstrapping estimates of species
richness. The collecting areas that yielded the requisite data are noted in Figs 2, 6 and 7.
Barnosky (2001) provides additional discussion of methods, as well as details for analyses
of the Rocky Mountain collecting areas. All estimates are for the minimum number of
species, because specimens that were identifiable to genus but not to species were assumed to
belong to specifically identified congeners.

RESULTS

Fluctuations in species richness, calculated as total species divided by duration of the time
interval sampled, did not show a strong correlation with climate change through time
(Figs 1 and 3). Despite this apparent lack of correlation, all three individual species richness
curves (Fig. 3) displayed a concordant signal. The pronounced Late Oligocene Warming in
Ar2 was accompanied by almost no change in richness for the Mountains, a slight decrease
in the Northwest and a more marked decrease in the Plains. On the other hand, a major
increase in species richness in all three regions coincided with the warmest part of the
Mid-Miocene Climatic Optimum 17 to 14 million years ago. The fact that species richness
did not change in the same direction during the two separate warming events argues against
mean global temperature change itself strongly affecting species richness in the three
geographic regions. However, the concordant signal in all three regions (Fig. 3) was con-
sistent with expectations for a uniform climatic signal that may be important in the three
regions but is not reflected in the global signal. In addition, because of the similar signal in
all three regions, combining the data into one curve for the northwest quarter of the USA
produced essentially the same pattern, but with higher total numbers of species (Fig. 1).
Caution is warranted in interpreting the patterns in Fig. 1, however, because estimating
species richness as species per time interval may be strongly affected by differing numbers
of localities in each time interval. Correlation analyses indicated that this is possibly the
case for our data. The relationship between total species and length of time interval is
non-significant (r=0.298, P =0.302). In contrast, the relationship between total species
and number of localities in each time interval is highly significant (r=0.771, P =0.001).
Therefore, species per million years does not accurately compensate for biases in preserv-
ation, namely, how many localities are known for each time interval. To guard against
this potential effect biasing the conclusions, we also constructed richness curves using an
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Fig. 3. Region-by-region species richness curves overlaid on the oxygen-isotope curve. See Fig. 1 for
further explanation.

alternative proxy for species richness — species per locality (the total species divided by
the number of localities in each time interval). This metric is a ratio in which both the
numerator and denominator tend to increase as more data are accumulated. This means
that small differences in the metric reflect large differences in the numbers of species relative
to the numbers of localities.

As was the case for the species per million year curves (Fig. 3), the species per locality
curves showed no relationship with climate change through time (Fig. 4). During the Late
Oligocene Warming, species per locality increased slightly in the Plains, decreased slightly in
the Mountains and underwent a sharp drop in the Northwest. Unlike in Fig. 3, the regional
Mid-Miocene Climatic Optimum diversity curves are discordant: little change occurred in
the Plains and Northwest in Bal, whereas a large jump was seen in the Mountains. Neither
the Hadley nor the Canadian global climate models predicted a markedly disparate climate
signal in the Mountains region relative to the northern Plains and Northwest during a
warming event given modern boundary conditions. The discordant species richness pattern
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Fig. 4. Region-by-region species diversity curves, with diversity expressed as species per locality,
overlaid on the oxygen—isotope curve. See Fig. 1 for further explanation of the oxygen—isotope curve.

evident in Fig. 4 would be unexpected if a similarly uniform climate signal in all three
regions was driving species richness in the Oligo-Miocene.

This peak in the Mountains region may be an artifact of having relatively few (n = 6) Bal
localities. It so happens that one of these (Anceney) yielded thousands of specimens and
is relatively species-rich. Adding more localities that were less species-rich, perhaps because
they were less well-sampled, might be expected to lower the value for species per locality.
However, even doubling the number of localities (to 12) and adding no new species would
leave a Bal peak above the background level for the Mountains curve. The number of
localities would have to be tripled (to 18) and no new species added from those localities to
remove the peak. This is an unlikely eventuality, especially given the endemism that seems
apparent within the Mountains during the Barstovian (see below). For these reasons, while
sampling issues may contribute to the peak within the Mountains curve, sampling is
unlikely to provide the whole explanation.

Combining the individual regional curves into one curve (Fig. 5) produced an unexpected
pattern that did not simply magnify the regional patterns. Instead of high diversity in Bal,



820 Barnosky and Carrasco

Species/Locality
~" Oxygen-isotope

Curve
3— 0
2— 1
1 6 n
14 4 — 2
B —~
N B 8
m = MID-MIOCENE - o=
— CLIMATIC OPTIMUM Y}
0— o L 3 0O
LATE OLIGOCENE L ©
2> G WARMING .
— (a0}
g < 3 -
8 oo A T 0 ° =T
S 99 < < T o O |4
=32 | T Q 2 T B o
o Owm |L< < I © o O
Q 0g ; B
g; ol Arikareean He| Ba Cl |- 5
'S £ Oligocene Miocene
3 (@)
2 = T 1T T [T T T 1]
o 30 20 10

Age (Millions of Years Ago)

Fig. 5. Composite species diversity curve of all three biogeographic regions overlaid on the oxygen—
isotope curve. Species diversity is expressed as species per locality. See Fig. 1 for further explanation of
the oxygen—isotope curve.

the combined curve peaked in Hel and fell precipitously in Bal. The differences between
Figs 4 and 5 are the result of between-region differences in species composition. Among
regions in Hel, species composition varied greatly; that is, each region had a largely distinct
set of species. This led to an apparent peak in diversity during Hel in the composite curve
(Fig. 5), even though diversity within each region was not particularly high during that
interval (Fig. 4). During Bal, the Mountains had many more species than they did earlier,
but many of these species were shared with the Plains and Northwest. This factor — more
shared species between regions — acted to depress the composite curve in Bal (Fig. 5).

The curves shown in Figs 1, 3, 4 and 5 reflect the compiling of species from many
different collecting areas within a given geographic region. High richness could result from
high beta diversity but low alpha diversity, high alpha diversity but low beta diversity, or
both high alpha and beta diversity. To gain some insight into which aspects of diversity may
have changed through the Late Oligocene Warming compared with the Mid-Miocene
Climatic Optimum, species accumulation curves were produced by bootstrapping tech-
niques (Colwell, 1997) for collecting areas and localities for which data were available
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Fig. 6. Bootstrapping estimates of species accumulation curves. Values for species richness are
expressed as the quotient of the estimated total species divided by the maximum length of time that
could be spanned by the pertinent collecting area. In most cases, this is the entire length of the
biochronological age. (a) Bootstrapping curves for the Mountains region; (b) bootstrapping curves
for the Plains region. See Fig. 2 for location of samples.

(Figs 6 and 7). These curves provide a perspective on alpha diversity because they depict
diversity within one collecting area.

The bootstrapping analysis was first plotted with species richness divided by the max-
imum length of time that could be spanned by samples in a given collecting area (Fig. 6). In
most cases, this corresponded to the length of the relevant biochronological subdivision
(e.g. Arl). This analysis provided no evidence for differences in species richness between
Arl, Ar2, He2&3 or Ba2 for the Mountain localities (Fig. 6a). The Plains localities (Fig. 6b)
exhibited a distinct decrease in alpha diversity from Arl to Ar2 (across the Late Oligocene
Warming), then potentially rose as high as Arl values in Bal (coincident with the
Mid-Miocene Climatic Optimum), then decreased in Ba2. The low diversity for Sheep
Creek may represent a taphonomic bias characterized by preservation or collection of
predominantly large mammals, although the same collection techniques were used
at Olcott. Comparison of Figs 6a and 6b indicates: (1) that the alpha diversity patterns
in the two regions differed through time; and (2) that peak alpha diversity did not
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Fig. 7. Bootstrapping estimates of species accumulation curves. The time spanned by each set of
samples is assumed to be equal. (a) Bootstrapping curves for the Mountains region; (b) bootstrapping
curves for the Plains region. See Fig. 2 for location of samples.

coincide with the Mid-Miocene Climatic Optimum in the Mountains, but may have in
the Plains.

The second bootstrapping analysis (Fig. 7) assumed that each collecting area used in the
procedure represented an approximately equal amount of time. That is, a given collecting
area in the Arikareean was assumed to represent the same amount of time as a given
collecting area in the Hemingfordian or Barstovian. Under this assumption, alpha diversity
in the Mountains (Fig. 7a) corresponded well with what would be expected if global
warming caused changes in species richness during the Late Oligocene Warming: an
increase in diversity from Arl to Ar2. The Mid-Miocene Climatic Optimum was the time
of lowest alpha diversity in the Mountains (He2&3, Ba2). The lowest alpha diversity also
appeared during the Mid-Miocene in the Plains data set (Fig. 7b). Like the Mountains data
set, the Plains data also showed a change in diversity from Arl to Ar2, but in the opposite
direction. These data suggest that there was no Mid-Miocene peak in alpha diversity
in either region, and that species richness responded oppositely to the Late Oligocene
Warming in the Plains and Mountains.
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DISCUSSION

Three important questions arise from these results: (1) To what extent might sampling
biases be producing a pattern with no biological meaning? (2) If the signal is real, how do
the regional patterns compare with continent-wide patterns? (3) What insights do these data
provide on how global warming events affect species richness?

A major feature of our first data analysis, using species per million years as our measure
of species richness, is the peak in species richness during the Mid-Miocene Climatic
Optimum (Figs 1 and 3). However, as discussed, a potential bias in estimating species
richness from simply counting up numbers of species per time interval is that richness
generally is correlated with numbers of localities (and ultimately numbers of specimens)
known from the interval (Alroy, 2000). In the data set reported here, much of the variation
in species richness was correlated with numbers of localities included in a given time interval
and not related to interval length, the common method of standardization for species
diversity analyses. This lack of correlation to the lengths of subdivisions of land mammal
ages might be expected because these subdivisions are based on the first appearance of taxa
— more localities lead to more taxa and more subdivisions. Therefore, shorter subdivisions
are likely to have better preservation, better temporal resolution and greatly exaggerated
values for species per million years relative to longer, more poorly sampled subdivisions.
This conclusion is supported by the drastically different curves produced using species per
million years versus species per locality (Fig. 3 vs 4). Species richness measures that employ
per million years standardization should therefore be used with caution.

Neither analysis suggested a dramatic change in species richness at the Late Oligocene
Warming. We cannot discount aliasing in obscuring the relationship between the mammal
data and the temperature signal and, therefore, the conclusion of no change in species
richness coincident with climate change during Ar2 is far from firm. If most of the Ar2
mammal localities in fact fall in the early part of the interval, no change in species richness
would be expected in our analyses even if species richness fluctuated in lockstep with the
global climate curve. In the case of a strong correlation between signals with mammal
localities distributed evenly throughout the interval, the change in species richness relative
to Arl would be dampened, although probably still detectable. Only if most of the localities
fell in the latter half of Ar2 would the full magnitude of highly correlated temperature and
average mammal signals be apparent relative to Arl. Independent stratigraphic control
presently is not good enough to sort out this problem. Even in view of this, however, it
would be difficult to discount the fact that the position of the species richness curve relative
to the oxygen—isotope curve is so different in the Late Oligocene Warming compared with
the Mid-Miocene Climatic Optimum.

The other interval in which aliasing could be important is during Ba2. The beginning of
the interval witnesses some of the warmest temperatures of the entire Oligo-Miocene, but
by the end average global temperature was nearly as cool as during Arl. Interpretations
thus range from assuming that most mammal localities fall in the beginning of the interval
and that high species richness occurred when temperatures were warm, to assuming that
most localities fall near the end of the interval and high richness occurred when temper-
atures were cold. In either case, the discordance in species-richness patterns between regions
(Fig. 4) would be hard to attribute to aliasing alone.

To explore further whether aliasing could somehow be erroneously showing no
relationship between the two curves when in fact a correlation existed, we used data
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provided by Alroy et al. (2000) to determine an average oxygen-isotope value for each
of our intervals. We then tested for correlation between the average oxygen-—isotope
value and the average species-richness value for both species per million years and species
per locality. We found no significant correlations, which agrees with the results of Alroy
et al. (2000) when they performed a similar analysis on data binned into uniform 1 million
year intervals.

The lack of a peak at 16-17 million years in the cumulative species per locality curve
(which peaks at about 18 million years) and in the regional Plains and Northwest data
(trough at 15-17 million years) contradicts the results of some previous continental species
curves compiled using different techniques. Stucky’s (1990) analysis of continental generic
richness through the Cenozoic recognized a peak in generic richness corresponding with
the Mid-Miocene Climatic Optimum, around 16 million years ago. Alroy (2000) and Alroy
et al. (2000) tried to correct for different sampling intensities in constructing continental
richness curves and computed richness for lineages rather than for species. They tried to
resolve more finely the age assignment of species with a protocol based on conjunction
analysis (Alroy, 1992, 1994), which provided estimates of richness at 1 million year time
slices. Those studies also noted a peak in continental richness at the Mid-Miocene Climatic
Optimum (1617 million years). Also in contrast to the results presented here, the curves of
Alroy (2000) and Alroy et al. (2000) suggest highest richness at about 26 million years ago.
This corresponds with the times of relatively low richness in Figs 4 and 5.

The different interpretations of Miocene and Oligocene diversity patterns as depicted
by Alroy and Stucky and Figs 4 and 5 could reflect biological reality. Under this scenario,
diversity would have remained more or less constant in the Northwest, northern Rockies
(in the Oligocene only) and northern Plains. The peaks in the Alroy and Stucky curves
would therefore have to arise from diversity increases in the Far West, Great Basin,
south-central Rockies and south-central Plains, with perhaps some contribution from the
northern Rockies. Alternatively, the different techniques of building the curves in this study
versus the Alroy and Stucky studies may lead to different results (Stucky, 1990; Alroy, 2000).

Our species per locality regional results do indicate a peak in diversity in the Barstovian
(Bal and Ba2, ~14 to 15 million years ago) in the Mountains. This is about 1 million years
later than the peaks in the Alroy and Stucky continental curves. The Bal-Ba2 peak in
Mountain diversity is consistent, however, with the results of Barnosky (2001), who plotted
locality-by-locality species richness against numbers of identifiable specimens per locality
for Rocky Mountain localities of relevant ages and found the slopes of the Mid-Miocene
Climatic Optimum data to be steeper than the slopes derived from the localities that
spanned the Late Oligocene Warming.

Such discrepancies and points of agreement between studies highlight some productive
areas for future research that are beyond the scope of the present paper. They also strongly
underscore the utility of analysing species-diversity data on a region-by-region basis.

The estimates of alpha diversity (Figs 6 and 7) are subject to several biases. Foremost is
that the algorithms used to produce the curves were designed for controlled experimental
data. That is, each sample ideally should be of equal size and accumulated the same way,
species should be reliably identified from complete individuals, and individuals should be
precisely counted. Clearly, none of these assumptions hold true with fossil data. In the
analysis reported here, the sample size issue was addressed by examining richness as a
function of numbers of identified specimens (NISP), rather than as a function of numbers
of samples. The fossils that ultimately contribute to an analysed palaeontological sample
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filter through a complex taphonomic pathway that includes mode of death, probability of
preservation and collecting technique. As much as possible, localities included in the
bootstrapping analyses were those that evidenced reasonably similar taphonomic pathways.
Using NISP as a counting technique obviously overestimates the numbers of individuals
and, therefore, affects the shape of the curves, but this bias is constant for all samples. Thus
while it would not be valid to compare these curves to those produced from sampling
individuals from a modern fauna, it is appropriate to compare the palaecontological curves
to each other. Bigger problems are introduced from assumptions about the amount of time
each sample averages. If the set of samples from one collecting area spans substantially
more time than the set of samples from a second collecting area, richness is apt to be greater
due to accumulation of species through evolution and immigration. One end of the
spectrum assumes that each collecting area encompasses the total length of time spanned
by the biochronological interval in which it falls (Fig. 6). The other end of the spectrum
assumes that each collecting area spans the same amount of time (Fig. 7). It is not yet
possible to assess time spans accurately enough to confidently choose one end of the
spectrum over the other. Therefore, inferences here do not go beyond interpreting alpha
diversity to fall somewhere in the range of possibilities bracketed by the two extreme cases
(Figs 6 and 7). Barnosky (2001) discusses further the potential temporal effects for the
Mountain localities.

Given these caveats in interpreting the bootstrapping results, Figs 6 and 7 suggest that
alpha diversity did not peak during the Mid-Miocene Climatic Optimum in the Mountains
(Figs 6a and 7a). For the Plains, the range of possibilities is inconclusive. Under the
assumption of unequal time spans for collecting areas, a Mid-Miocene peak is possible
(Fig. 6b); under an assumption of equal time spans, the peak disappears (Fig. 7b). For the
Late Oligocene Warming, the Mountain curves range from no support for response to
warming (Fig. 6a) to an increase in alpha diversity coincident with warming (Fig. 7a). Both
Plains curves (Figs 6b and 7b) suggest a decrease in alpha diversity across the Late
Oligocene Warming. To summarize, the most robust conclusions from the bootstrapping
analyses are that: (1) alpha diversity did not substantially peak in the Mountains during the
Mid-Miocene Climatic Optimum; (2) alpha diversity dropped in the Plains during the Late
Oligocene Warming; and (3) the patterns of change in alpha diversity through time were
different in the Mountains and the Plains.

The lack of evidence for an increase in alpha diversity in the Mountains at the
Mid-Miocene Climatic Optimum is of interest in view of the peak richness at that time
indicated by Fig. 4 and by Barnosky (2001). As Stucky (1990) and others have recognized,
variations in alpha diversity and beta diversity are commonly decoupled. The relatively low
Mid-Miocene values for the bootstrap estimates of species richness (Figs 6a and 7a)
combined with high values for overall richness (Fig. 4) would result if alpha diversity was
low but beta diversity was high. That is, any single sampling locality would be characterized
by low richness, but the assemblages of species would differ dramatically from locality to
locality. This conclusion is borne out if one plots the localities known by only one sample
(such as Anceney) from the Mountains of Bal on Figs 6a and 7a. These single-sample
diversity estimates for Bal plot close to the curves shown for Ba2 and He2/3, yet when
species are summed across Mountain localities, the high peak in Fig. 4 results. If this high
beta/low alpha diversity was the case, the Mid-Miocene must have been characterized by
increased endemism within the Mountains. In accordance with depression of the composite
richness curve during Bal (Fig. 5), this endemism also must have been characterized by
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some areas in the Mountains sharing species with more easterly regions, and others sharing
species with more westerly biogeographic provinces. Such changes in provinciality at times
of faunal turnover and regionally differentiated changes also have been reported for
Eurasian Miocene faunas, and may well represent the norm for what to expect on the
subcontinental geographic scale through long spans of time (Fortelius et al., 1996; Werdelin
and Fortelius, 1997; Fortelius and Hokkanen, 2001).

The peak richness in the Mountains around 15 million years has been attributed to the
onset of the Mid-Miocene Climatic Optimum in the northern Rockies (Barnosky, 2001), but
that conclusion now seems less firm in light of the absence of any response in mountain
faunas at the Late Oligocene Warming. The Mid-Miocene richness peak also follows closely
the break-up of the northern Rockies and the Basin-and-Range into a diverse landscape
characterized by high topographic relief over short distances, and the outpouring of huge
amounts of bimodal volcanic flows and ash that significantly changed soil compositions
across the western United States. Accompanying these events was extension of the Basin-
and-Range that led to increasing its area by some 50% or more (Smith and Braile, 1994). It
is tempting to speculate that these tectonic events stimulated faunal diversification directly
and indirectly by introducing geographic barriers and changing selection pressures for many
taxa. Differences between the regional curves in Fig. 4 and the composite curve in Fig. 5 are
consistent with this speculation. During the Hemingfordian and Barstovian, the composite
curve does not appear to reflect the changes seen in the regional curves. This lack of
reflection would arise if the Mountain fauna shared more species with other biogeographic
provinces (e.g. became regionally more pandemic) at some times (low points on Fig. 5) and
was regionally less pandemic at others (high points on Fig. 5) relative to the northern Plains
and Northwest. At the same time the Mountains exhibited regional pandemism (Bal,
Fig. 5), we see evidence for periods of increased endemism within the Mountains (high beta/
low alpha diversity) (Figs 6 and 7). This within-province endemism is not seen in the Plains
and the Northwest, where the lack of change is consistent with a tectonic link to changes
in species richness and endemism, because those areas were not directly topographically
altered by tectonism. Despite these suggestive patterns, the effect of tectonism on species
richness remains an open question that merits future work.

Alternatively, it may be that climate change initiated faunal changes at the Mid-Miocene
Climatic Optimum but not at the Late Oligocene Warming. The Mid-Miocene Climatic
Optimum appears to record the crossing of a climatic threshold that apparently was not
crossed at the Late Oligocene event. Unique attributes of the Miocene event relative to the
Oligocene one include the following (Flower and Kennett, 1994): (1) deep water cooling,
indicating major shifts in ocean currents beginning ~16 million years ago; (2) high-
amplitude variations in sea level ~16 to 14 million years ago; (3) faunal turnover in
planktonic foraminifera from the tropics to high latitudes; (4) evolutionary turnover
in benthic foraminiferal assemblages from ~17 to 14 million years ago; (5) invigoration
of surface ocean circulation patterns, including strengthening of gyral circulation and
oceanographic fronts; (6) the so-called Monterey Carbon Excursion (Vincent and Berger,
1985; Mutti, 2000), which indicates dramatic and episodic changes in how organic carbon
was distributed in carbon reservoirs affecting atmospheric partial CO, between 17.5 and
13.5 million years ago; (7) changes in deep water circulation; and (8) potentially increased
aridity for mid-continental regions including western North America. If crossing this
climatic threshold caused regional climatic changes in the northern Rockies, adjacent Plains
and Northwest to diverge relative to how the regions reacted to the Late Oligocene event,
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climate change could in fact have precipitated the pattern of biotic change we observe.
However, even under this scenario, we would not expect to see regional differences in
species-richness patterns given the geographic proximity of the three regions then and now.
Nevertheless, the relative merits of this hypothesis versus the tectonic one, or, indeed, if the
biotic changes we see in the Mid-Miocene reflect an intersection of both tectonic and global
climatic thresholds, deserves further testing.

CONCLUSIONS

The information reported here supports the findings of Alroy et al. (2000) that the corre-
lation between global temperature change and species richness through time is not strong.
In fact, the data strengthen that conclusion by documenting no uniform richness response
to major global warming events even within regions that today share a cohesive climate
signal and probably also did in the past. One interpretation is that climatic parameters are
not important in influencing species richness through time. Alternatively, specific climatic
parameters could be important, in which case mean global temperature inferred from the
oxygen-isotope curve would not be the relevant proxy.

The most robust signal in the regional data presented here is the peak of richness in the
Mountains region during the Mid-Miocene Climatic Optimum. The richness peak seems to
be the result of increased endemism, as evidenced by the bootstrapping analyses of alpha
diversity. Although the Mid-Miocene richness peak coincides with a global warming event,
the absence of a regional richness peak during the more pronounced Late Oligocene
Warming or concomitant increases in the northern Plains and Northwest makes it unlikely
that global warming itself caused the increase in species richness. The Mid-Miocene also
coincided with the tectonic break-up of the western United States, an increase in contin-
ental area due to extension of the Basin-and-Range, a pronounced immigration of mammal
species into North America from Eurasia (Woodburne and Swisher, 1995) and the crossing
of a climatic threshold signalled by the Monterey Excursion and related oceanographic
evidence (Vincent and Berger, 1985; Flower and Kennett, 1994; Mutti, 2000). It is easy to
derive a plausible scenario of fragmentation of formerly more extensive geographic ranges,
changes in selection pressures, competition from immigrants and qualitatively new climatic
regimes (due to a larger and topographically higher Basin-and-Range Province, new ocean
circulation patterns and different partial CO, relative to the late Oligocene event) affecting
the northern Rockies. These events would be consistent with increased speciation
rates and the addition of ecological niche-space to the landscape. However, such a model
requires explicit formulation and testing with well-conceived research designs before
acceptance.

Perhaps our most important conclusions are that assessing species richness in fossil data
sets remains onerous, and that how richness is assessed very much affects interpretations
about climate’s role as a driver. Alroy (2000) has demonstrated the variations that can occur
by applying different assumptions and analytical filters to data bearing on continental
richness patterns. This paper and Barnosky (2001) demonstrate that different assumptions
about temporal duration of samples can lead to very different interpretations about alpha
diversity, that different methods of standardization of species richness have large effects on
beta diversity estimates, and that geographic scaling issues are important in understanding
details of how richness changes through time. Many of the critical assumptions lie at the
level of the primary field data — for example, how many specimens were collected, what was
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the taphonomic situation and what independent evidence can be brought to bear on the
amount of time a given lens of rock spans? Hence future studies that combine knowledge of
the primary field sites with appropriate statistical techniques are needed to resolve details of
the picture that is beginning to emerge.
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