The Genetics and Evolution of the Skeleton Research Initiative recently had its semiannual meeting in San Francisco. Organized by UCMP Faculty Curator Leslea Hlusko, the focus for this year’s meeting was Development, Diseases, and Evolution of Mineralized Tissues. Two graduate students from the Hlusko lab, Theresa Grieco and Sarah Amugongo, give us these snapshots from the conference:
Highlights from the conference, by Theresa Grieco:
The GESRI meeting draws bone biologists from all over the Bay Area — UC Berkeley, UC San Francisco, UC Davis, Stanford, and Lawrence Livermore National Lab. The speakers and attendees work in a variety of contexts, including biomed, EvoDevo, paleontology research, and veterinary/clinical research. It is great that this meeting is able to draw together a diverse group that is willing to talk across field boundaries and present their findings to the broader scientific community. We heard talks about fracture repair, bone mineralization and its changes during fossilization, osteoarthritis, tooth bioengineering, and how bones and teeth can be used to infer life history traits.
For me personally, it is a great way to meet and keep in touch with local mentors and colleagues and get fresh ideas. It’s really the best way to find out about potential resources and collaborations for research projects. It was also great to see a presentation by a biochemist or embryologist drawing questions from practicing MDs or bioengineers, and to see such different people getting excited about each other’s work. One thing that I thought was interesting was that sometimes questions would be misunderstood, usually because people trained in different fields catch on to very different aspects of your research than the ones you’ve been trained to look at. Talking about these kinds of questions in a little more detail can reveal significant implications of your research in other arenas, or where the methods or data collected from another field could make your research better.
A highlight of the day was one of our plenary speakers, Dr. David Kingsley, who gave a talk about why he developed the stickleback fish as a model system for EvoDevo and a case study about pelvic reduction and hindlimb loss in these fish. Through genetic mapping, his lab identified a set of chromosome deletions in the regulatory region of a gene called Pitx1. These deletions have been selected for in many different stickleback populations around the world. These deletions only affect the molecular switch for Pitx1 expression in the hindlimb, allowing the rest of the gene’s vital functions to be preserved. He then showed us how similar phenotypes can be seen evolutionarily, with hindlimb loss and pelvic reduction in snakes, manatees, and in mice missing the Pitx1 gene. Dr. Kingsley then brought us into the clinic with case studies of club foot in humans. Wow!
A sampling of GESRI talks, by Sarah Amugongo:
Though only in its infant stages, GESRI has already become very popular among bone biologists in the Bay Area and beyond. I was astounded by the turnout, especially from the un-registered members. The range of topics covered was quite impressive: from basic bone biology, to clinical application, to evolutionary history of bone mineralization.
Here are a few of the talks that were given at the conference:
- One talk focused on the repair of fractures. A high oxygen level was demonstrated to be very important for the healing of fractures. Interestingly, the process of fracture repair is different from the process of normal bone development in several ways. The source of bone cells is different, and the processes that regulate cell fate are different too.
- The inverse relationship between osteoarthritis and osteoporosis was also notably interesting. With the loss of cartilage, there is an up-regulation of bone growth as demonstrated by research on osteoarthritis of the hip.
- The growth hormones TGF-beta and IGF-1 have different signaling pathways, but both have been demonstrated to be important to the skeleton as they regulate osteoblast differentiation and proliferation. Osteoblasts are cells that are responsible for bone formation.
- In addition to studying the extant organisms, learning that soft tissue is also preserved in the fossil record through the study of dinosaur fossils was really amazing. It made me wonder what else we’ve been missing by just focusing on bones. This might open a whole new area of research in paleo!
View the full meeting program here.