University of California Museum of Paleontology UCMP in the field See the world (and its fossils) with UCMP's field notes.
About UCMP People Blog Online Exhibits Public programs Education Collections Research

Archive for the ‘Research’ Category.

Understanding the evolutionary history of the cassiduloid echinoids

Photographs of Rhyncholampas gouldii (Bouve) (Cassidulidae) in aboral, oral and posterior view (from left to right).

Figure 1: Photographs of Rhyncholampas gouldii (Bouve) (Cassidulidae) in aboral, oral and posterior view (from left to right).

It is widely recognized that major groups evolve at different rates, in their own evolutionary trajectories. Some evolve fast and are very diversified while others evolve slowly and may never experience an explosion of diversity throughout their trajectory. One of my research interests is understanding the pace of morphological evolution through time, and the organisms selected to investigate this topic are the irregular echinoids.

Commonly known irregular echinoids include the sand dollars (clypeasteroids) and the heart urchins (spatangoids). They are called “irregular” because they evolved morphological innovations that depart from the “regular and pentaradial symmetric” type, seen in the sea urchins. Most of these innovations evolved convergently in different groups and are mostly adapted for their infaunal (i.e., burrowing) life style. For instance, irregular echinoids usually have a flattened test with thin spines that are more adapted for burrowing. They also evolved petals with specialized tube feet for breathing, their anus moved away from the apical disk possibly to avoid waste released near the petals, and they lost the Aristotle’s Lantern as adults and feed on the detritus in the sediment. Finally, irregular urchins have an anterior-posterior polarity and are said to have a secondary bilateral symmetry (the larvae has primary bilateral symmetry). Irregular echinoids evolved during the Mesozoic Marine Revolution and these morphological modifications are just a small part of their interesting evolutionary history! In addition, they live worldwide, their fossil record is excellent, and the major groups display very contrasting evolutionary histories.

Figure 2: Drawings of cassiduloid structures (on the left, the mouth and oral plates and phyllopores [i.e., pores where the tube feet specialized for feeding are found]; in the right, the oral ambulacrum II).

Figure 2: Drawings of cassiduloid structures (on the left, the mouth and oral plates and phyllopores [i.e., pores where the tube feet specialized for feeding are found]; in the right, the oral ambulacrum II).

Besides the sand dollars and heart urchins, there are three other groups of extant irregular echinoids: the holectypoids, echinoneoids and cassiduloids. One of the reasons you have probably never heard about them is that they are rare. My research focuses on the cassiduloids (Figure 1; some known as lamp urchins). Cassiduloids probably originated in the Cretaceous and reached a peak of diversity in the Eocene, when they composed about 40% of all echinoid genera. After the Eocene, their diversity declined sharply and today only about 30 species are known. Although their fossil record is very species rich, the cassiduloid morphology appears to be quite constrained. Few novelties evolved throughout their long evolutionary trajectory (as opposed to the heart urchins), and the species found today are mostly endemic and restricted to certain kinds of environments (e.g., mostly warm waters and with coarse grain sediments).

The classification of the cassiduloids is very controversial, and it has been shown that they may not compose a monophyletic group. Therefore, the first step of my research is reconstructing a time-calibrated phylogeny of the cassiduloid echinoids that will allow me not only test the relationship within the group but also to understand how the major cassiduloid groups relate to the other irregular echinoids. In addition, a phylogeny will allow me study the evolution of major innovations within the group, their rate of morphological change, and their patterns of biogeographic distribution through time. Because of the rarity and poor preservation of the cassiduloids in museum collections, I am focusing on the morphological data. Most of the characters analyzed focus on the plate patterns of the test, which can be seen in well preserved fossils, and I am also obtaining micro-computerized-tomography (i.e., 3D) images of extant specimens at the Lawrence National Berkeley Laboratory to find novel characters that are difficult to see with stereo-microscopes (Figure 2).

Many of the specimens included in my analyses are deposited at the UCMP and at the California Academy of Sciences. However, most of the extant cassiduloids are very rare and restricted to one or two scientific collections; and some are known only for their type specimens. To analyze such taxa I often have to visit these collections. After analyzing the specimens deposited in the Bay area museums, last summer I started exploring specimens deposited elsewhere.

Figure 3: Photographs of the Australian Museum building depicting a T-rex (head and tail can be seen coming out of the windows), of my Australian favorite terrestrial animals — the rainbow lorikeet and a kangaroo, and a record of my first time on the West Pacific ocean.

Figure 3: Photographs of the Australian Museum building depicting a T-rex (head and tail can be seen coming out of the windows), of my Australian favorite terrestrial animals — the rainbow lorikeet and a kangaroo, and a record of my first time on the West Pacific ocean.

My first stop was Australia (Figures 3–4). The Australian Museum in Sydney and the Melbourne Museum were chosen not because of the diversity of cassiduloids present but by the uniqueness of the species found there, both in the invertebrate and paleontological collections. One of advantages of visiting collections instead of asking for loans is the surprises we often find. For instance, I found a misidentified specimen in the Australian Museum whose species was known only by its two co-types. This specimen not only provided me with more information on the morphological variation of this species but also increased its known geographic range. I also had great surprises on the Melbourne Museum, where I could analyze two specimens that they had recently obtained and therefore were not present in their database. Besides analyzing cassiduloid species I had never seen before, I also met Frank Holmes, an amateur paleontologist who works in the Melbourne Museum and shares my passion for the cassiduloids. Frank has described cassiduloid species and we had great discussions over an undescribed Paleocene cassiduloid he is working on!

Figure 4: Photograph of the Melbourne Museum building (top left), of the Queen Victoria Market (a “must go” place in Melbourne according to the natives; bottom left), and of me and Frank Holmes in the paleontological collection (image on the table is of the new Paleocene cassiduloid) (right).

Figure 4: Photograph of the Melbourne Museum building (top left), of the Queen Victoria Market (a “must go” place in Melbourne according to the natives; bottom left), and of me and Frank Holmes in the paleontological collection (image on the table is of the new Paleocene cassiduloid) (right).

My next and final stop was the Smithsonian Institution National Museum of Natural History (NMNH) in Washington D.C. (Figure 5). Visiting their echinoderm collection was one of my dreams as an undergrad, not only because this collection houses the great majority of specimens I have always needed to analyze, but also because of the great researchers who have worked there, such as Theodore Mortensen, Elisabeth Deichmman, and Porter Kier. Their echinoderm collection is divided into three collections: the dry collection and the paleontological collection are housed in the main building in Washington D.C., and the wet collection is housed at their Museum Support Center in Suitland, Maryland (Figure 5). So I often travelled back and forth between these collections and focusing on the cassiduloid was not hard at all. There were just so many of them!!!

Figure 5: Photograph of the NMNH building (top left), of my workstation at the Museum Center in Suitland (bottom left), and of myself with the oversized echinoderms in the wet collection (right).

Figure 5: Photograph of the NMNH building (top left), of my workstation at the Museum Center in Suitland (bottom left), and of myself with the oversized echinoderms in the wet collection (right).

Figure 6: Book of the Springer room visitors; in detail, a record of the visit of the UCMP Director Charles Marshall in 1989 to analyze clypeasteroid echinoids (i.e., sand dollars)!!

Figure 6: Book of the Springer room visitors; in detail, a record of the visit of the UCMP Director Charles Marshall in 1989 to analyze clypeasteroid echinoids (i.e., sand dollars)!!

The NMNH echinoderm paleontological collection in particular surprised me for having its own room! The Springer room is dedicated to Frank Springer, an amateur paleontologist who donated a significant  echinoderm specimens (most of which are crinoids, Frank Springer’s favorites) and literature to the NMNH. The preservation of many fossils in the Springer room is superb and captures a great level of detail. The cassiduloid collection, for instance, is very diverse and is composed of fossil specimens from all over the world. This abundance is probably a result of Porter Kier’s work on the “Revision of the Cassiduloid Echinoids”. For most of the species, I could even choose five or more of its best specimens, a privilege I have never had in any other collection.

The Springer room also has one of the best libraries on echinoderm paleontology in the country, together with Porter Kier’s jacket, and a book of signatures which has recorded all history of visits in the room. Among these, I found the signature of the UCMP director Charles Marshall (Figure 6)!

At the end of my journey, I analyzed 47 cassiduloid species (eight extant and 39 fossils; about 150 specimens, including 13 type specimens). All this data was integrated into a morphological matrix, and the phylogenetic analyzes will be performed when I analyze all specimens chosen.

Surprising new finds in museum specimens

The author measuring lizard specimens at the AMNH in New York City.

Figure 1: The author measuring lizard specimens at the AMNH in New York City.

I am very grateful to have received a UCMP Graduate Student Research Award via the Barnosky Fund in April 2016. I used these funds to collect pilot data from major natural history museum collections around the country for my dissertation research.

My research investigates responses in fossil animal communities to climate change over long time intervals. We need historical data about the affects of climate change on animals in the past in order to anticipate these affects on animals in the future. I focus on reptiles because we already know that climate affects the appearance and habits of reptiles today. We do not yet understand how this relationship affects the evolution of reptiles over long periods of time. I am examining the fossil record of reptiles in North America through the Paleogene, a period that lasted from about 66 to 23 million years ago (Mya). The planet experienced major warming and cooling during this time, and North America has an excellent fossil record spanning the same interval.

Over the last year, with support from UCMP funds, I sampled fossil collections at the Field Museum of Natural History in Chicago, IL; the Smithsonian National Museum of Natural History in Washington, D.C.; the Denver Museum of Nature and Science in Denver, CO; the Boulder Museum of Natural History in Boulder, CO; and the American Museum of Natural History in New York, NY (Fig. 1). I measured and photographed 330 fossil lizard and 150 fossil crocodylian specimens, representing over a dozen intermontane basins in the Western Interior of the U.S.

I also made a surprising discovery at the Denver Museum: a fossil lizard specimen showing distinctive signs that the tail broke off and had started to grow back. This is the earliest evidence of tail regeneration in a fossil lizard. It suggests that armored lizards were evading predators by dropping and re-growing their tails as early as 50 Mya.

Figure 2. Specimen DMNH 16950. Fossil lizard tail showing signs of regeneration. Scale bar = 1 cm.

Figure 2. Specimen DMNH 16950. Fossil lizard tail showing signs of regeneration. Scale bar = 1 cm.

Over the next year, I plan to sample several more museum collections to complete my dataset. I will run statistical analyses to examine patterns of response to climate change in reptile communities over a span of more than 40 million years, and compare these results to documented changes in reptile communities today.

Thank you to the UCMP for supporting my research!

A Hitchhiker’s Guide to the Pleistocene Sea

Using Fossil Whale Barnacles to Reconstruct Prehistoric Whale Migrations

A fossil humpback whale barnacle, Coronula diadema, that we recently found in Plio-Pleistocene deposits of Panama.

A fossil humpback whale barnacle, Coronula diadema, that we recently found in Plio-Pleistocene deposits of Panama.

Baleen whales, as we know them today, lead lives that are largely defined by their annual migrations. Every year, whales spend their winters breeding and reproducing in tropical waters, then travel to poleward feeding areas each summer. For North Pacific humpback whales, winter breeding areas cluster around Central America and Hawaii, and then they travel to the Gulf of Alaska to feed in the summer (small numbers also feed on the California coast). Likewise, gray whales travel from Baja California to the Bering Sea. These are the longest migrations made by any mammal, and they come at extreme energetic costs, as a whale will lose 25% of its body weight between summer feeding sessions.

Because of this cost, whales rely on taking in enormous amounts of food each summer, and thus they are tracking down the most productive areas of the ocean. In a sense, the migration routes of whales tell us something about ocean productivity and how it’s distributed, both in time and in space. This is where things get interesting: perhaps whale movements in the prehistoric past can yield clues about ocean productivity patterns millions of years ago. What’s more, being massive allows whales to afford this type of lifestyle: they have enough energy stores to last through the lean seasons, and their great size allows them to travel the thousands of miles necessary to reach their summer feeding areas. This link between body size and lifestyle has led some scientists to believe that it’s not just coincidence, and that perhaps whales are so big specifically because they evolved to better handle the demands of migration.

Larry Taylor in the field in Panama, getting ready to chisel a fossil whale barnacle out of the rocky outcrop he’s sitting on.

Larry Taylor in the field in Panama, getting ready to chisel a fossil whale barnacle out of the rocky outcrop he’s sitting on.

Can whale migrations of the past tell us something about productivity and nutrient distribution in the ancient oceans? Did whales really get so big because they evolved to migrate? Both of these questions rely on figuring out if whale were migrating in the past, and if so, how those migrations changed through time. My research seeks to answer these questions by taking advantage of fossil whale barnacles. Whale barnacles incorporate stable isotope signatures of the surrounding seawater into their shells, and as they grow, they continually deposit new shell beside older shell. That means that their shells end up with an isotopic signature of the water they’ve been growing in over their life. As it turns out, this signature can be decoded to give clues about where in the ocean each shell layer was formed. Thus, a whale barnacle acts like as a tracking mechanism, recording signatures of everywhere its host whale has been traveling.

My approach is relatively straightforward: I collect samples of shell powder from a barnacle by drilling into it, then these samples are isotopically analyzed by UC Berkeley’s Center for Stable Isotope Biogeochemistry. I then use an equation derived by Killingley and Newman (1982) to help reconstruct where the barnacle (and the whale it was riding on) has been. I first tried this approach with modern barnacles to verify the technique, and found that barnacle isotope profiles accurately reconstructed the migration of humpback and gray whales, including humpbacks that take multiple different migratory routes. Now my advisor, Seth Finnegan, and I are working purely in the fossil record, using specimens that have been loaned by museums as well as fossils we recently discovered in Panama. Results thus far are promising, as some of the fossil isotope profiles retain basic patterns also seen in the modern barnacles. There is a lot of work left to do, but these preliminary results give me confidence that we can extract useful information from the fossil barnacles. With luck and proper analysis, this work will shed light on just how prehistoric whales were moving, and what that means for the evolution of the ocean and of the whales themselves.

This work is generously supported by grants from the UC Museum of Paleontology, National Sigma Xi, the Berkeley Chapter of Sigma Xi, the Geological Society of America, the Paleontological Society, and by collaborators from the NOAA, the San Diego Natural History Museum, the California Academy of Sciences, the Smithsonian Tropical Research Institute, and the National Museum of Natural History.

Doing field work on the Panamanian coast yielded more benefits than just the exquisite fossils. Our field site was an eroded coastline, and we were awarded with incredible views.

Doing field work on the Panamanian coast yielded more benefits than just the exquisite fossils. Our field site was an eroded coastline, and we were awarded with incredible views.

Bringing the field to our users through EPICC’s Virtual Field Experiences

Ever wonder where fossils from the UCMP were collected or want to know more about the geological setting of UCMP field areas? Curious about why an area looks the way it does?

These questions and others are driving the development of Virtual Field Experiences (VFEs) associated with the EPICC project (Eastern Pacific Invertebrate Communities of the Cenozoic, http://epicc.berkeley.edu). Together with EPICC partners from the Paleontological Research Institution (PRI), UCMP Assistant Director Lisa White and Museum Scientist Erica Clites joined Robert Ross (PRI Associate Director for Outreach) and Don Duggan-Haas (PRI Director of Teacher Programming) to document field areas along the west coast serving as the basis for Cenozoic invertebrate fossil collections that are being digitized with support from the National Science Foundation (as part of the Advancing Digitization of Biological Collections program).

The EPICC partnership with nine natural history museums focuses on Cenozoic fossils found in the eastern Pacific. Within California, fossils from the Kettleman Hills in the Central Valley of California and fossils along the Pacific coast will be part of a series of VFEs designed to document and capture the field to museum connection. These connections provide an opportunity for our users to explore the geological backdrop of our Cenozoic invertebrate collections and learn how fossils are described and interpreted.

As a preview of the VFEs, which will go live in late spring, follow us into the field as we document fossils in context, highlight sedimentological features, and describe unique structures in the Purisima Formation along the California coast. During several days in March 2017, the UCMP and PRI team went to key locations along Capitola Beach (Santa Cruz County) and Moss Beach (San Mateo County) to photograph rocks and fossils, and videotape the team at work.

The primary goal of the VFEs is to show how paleontological field work and fossil data collection are done.

In these series of photographs taken at Moss Beach (the Fitzgerald Marine Reserve), view the team at work, capturing and documenting the source of some EPICC fossil collections.

 

EPICC_MossBeach_454

The team crosses a rocky stretch of beach in to inspect which sections of the Purisima Formation would be ideal for photography. At low tide, most visitors to the Fitzgerald Marine Reserve go to enjoy the tide pools and the organisms of the rocky intertidal zone.

Purisima formation

The team begins setting up at one of the Purisima Formation outcrops.

Bivalves in outcrop

The Purisima Formation, between 3-7 million years old, contains an array of fossil bivalves and other invertebrates. Here, among the shell fragments, is a fossil bivalve shown in life position in this cross sectional view.

Set up for filming the videos

Videographer, John Tegan setting up the shot with Rob and Lisa to discuss key features of the landscape.

EPICC_MossBeach_518

Don scanning the outcrop and capturing images in 3D.

Erica, for scale, describing some different textural features in beds of the Purisima Formation.

Erica, for scale, describing some different textural features in beds of the Purisima Formation.

Beds of the Purisima Formation are folded into a plunging syncline. UCMP Staff Assistant Lillian Pearson hops across for a better view.

Beds of the Purisima Formation are folded into a plunging syncline. UCMP Staff Assistant Lillian Pearson hops across for a better view.

Some of the shells are concentrated into highly fossiliferous sandstone and conglomerate beds, dense with fragments of bivalve and gastropod shells, with occasional echinoids and other fossils. The shells are highly fragmented and are embedded in pebble conglomerate suggesting these may be storm beds.

Some of the shells are concentrated into highly fossiliferous sandstone and conglomerate beds, dense with fragments of bivalve and gastropod shells, with occasional echinoids and other fossils. The shells are highly fragmented and are embedded in pebble conglomerate suggesting these may be storm beds.

 

Making these experiences more accessible.

UCMP and the Paleontological Research Institute will keep working together with all the EPICC partners to bring paleontological and geological experiences to the classroom through these virtual field experiences. We are enthusiastic about offering these educational tools and sharing the stunning geology of California and the west coast. We think the VFE will be especially helpful for communities who don't have ready access to outdoor spaces.

Once these VFEs are completed, they will be shared on the EPICC website. www.epicc.berkeley.edu

 

Cryptic caves and paleoecology of crustaceans in Cenozoic coral reefs

Just some months ago on a Saturday in July, I had the pleasure of snorkeling above the only coral reefs in the continental Unites States. These reefs in southern Florida still harbor many species of corals, fish, and other animals including crustaceans such as crabs, shrimps, and lobsters. These decapods are difficult to spot while snorkeling, but that does not mean they are not there. Their usually small size in this landscape of incredibly variable topography ensure they are able to hide effectively from predators. As for many other animals, coral reefs are a hotspot for decapod biodiversity. This was by no means different in the distant past. The rapid diversification of crabs and squat lobsters in sponge and shallow-water coral reefs during Late Jurassic is one of the best examples. When many reefs vanished in the earliest Cretaceous so did many of these crustaceans, highlighting the need to protect corals and, in doing so, also the associated, often cryptic animals.

One example of these cryptic animals are crabs from the Cryptochiridae family. Today, over 50 species are known of these tiny animals that have a carapace of less than a centimeter long. They do not hide in the rubble or between coral branches, but they create their own homes within the corals. Their home is either a true gall or a tunnel that is either circular/oval or crescentic in cross-section. Despite their high biodiversity, no convincing cryptochirid fossils were known until very recently.

Figure 1 white v2 small

The modern cryptochirid crab Troglocarcinus corallicola sitting snugly in a crescentic home in the coral Manicina areolata. Scale bar width: 50 mm for a, 5.0 mm for b. Source: Klompmaker, Portell & Van der Meij, 2016, Scientific Reports

Earlier this year, an open access article together with Roger Portell and Sancia van der Meij was published showing superbly preserved crescentic-shaped holes in Plio- and Pleistocene corals from Florida and Cuba. No animals other than cryptochirids create such holes so the culprit of this trace fossil was easy to identify. Unfortunately, no crabs were found inside the holes because these relatively soft and tiny crabs do not preserve well. Such crescentic holes should be present in more fossil corals all over the world. Why? Cryptic crabs that make such holes are found in corals in nearly all (sub)tropical regions of the world today. Additional evidence would help tremendously in constraining the antiquity of this family and with getting a better sense about their past biodiversity. So check out your fossil corals at home or in a museum nearby! Some places in the world expose fossil coral reefs as a good third alternative.

Figure x jpg

Pleistocene corals from Florida: Solenastrea bournoni (a, b) and Solenastrea hyades (c˗e) with close-ups of crescentic cryptochirid holes. Photo d shows the holotype of the trace fossil named after this particular shape: Galacticus duerri. The genus name is derived from Battlestar Galactica because of the similar cross-sectional shape of this battleship to these crescentic holes. Scale bar width = 50 mm for complete corals; 10 mm for close-ups. Source: Klompmaker, Portell & Van der Meij, 2016, Scientific Reports

That's exactly what I did in the summer of 2014, but for different reasons. I was lucky to receive funds from the Paleontological Society (Arthur James Boucot Research Grant) and a COCARDE Workshop Grant (European Science Foundation) to travel to Denmark to a very special fossil coral reef in the famous Faxe Quarry. This quarry is accessible to everybody and it certainly is a great place to visit when you are in Denmark as is the Geomuseum Faxe right next to it! My Danish colleagues Bodil Lauridsen and Sten Jakobsen helped to find the right places for collecting. The exposed coral and bryozoan mounds were living at 200-400 m depth in dim light conditions in the earliest Cenozoic (~63 million years ago). Such deep-water coral reefs can still be found all over the world up to depths of 1000+ meters by the way.

faxe-quarry

The Faxe Quarry at dusk after a long field day.

P1280345

Author (right) with colleague Sten Jakobsen (left)

This complex reef at Faxe also contains decapods, primarily crabs and squat lobsters. After more than a century of collecting, as many as 25 species are known. That’s a lot right? However, well-sampled, shallow-water fossil coral reefs from elsewhere in Europe contain even more decapods.  The Cretaceous-Paleogene extinction event that wiped out the non-avian dinosaurs, ammonites, and severely affected many other groups has apparently nothing to do with the lower decapod diversity at Faxe. Our analyses show that decapod diversity is not affected by this event. Instead, less food and perhaps fewer hiding places have contributed to this lower diversity. A comparatively low decapod diversity is also seen in today’s deep-water coral reefs.

These critters may differ also in body and eye size compared to their shallow-water friends in corals reefs. The crabs at Faxe tend to be larger for half of the analyses, whereas other results show no difference. Some ideas about the reasons include a lower number of predators, a delayed maturity, and an increased life span of these crustaceans in deeper, colder waters. Quite spectacular evidence was found when we compared the eye socket size (true eyes are not preserved) for crabs of the same size and genus from Faxe to those from a shallow-water reef. While initial results did not seem to show much, a closer look at the data and additional measurements did show a distinct difference. The eye sockets of the crabs at Faxe are larger than those from a shallow-water reef! Thus, these crabs evolved larger eyes to see better in the dim light conditions in Faxe ~63 million years ago.

P1280405

Leftover rocks from a number of days of field work at one of the sites in the Faxe Quarry.

Some crabs can be readily seen in the wall of the quarry. Here an example of a partially exposed carapace of Dromiopsis rugosus.

Some crabs can be readily seen in the wall of the quarry. Here an example of a partially exposed carapace of Dromiopsis rugosus.

crabs

Carapaces of crabs and some squat lobsters (c, d) from the Faxe Quarry in Denmark and some crabs from Spain (g, h). a. Dromiopsis rugosus; b, Dromiopsis elegans; c, Protomunida munidoides; d, Galathea strigifera; e & f, Caloxanthus ornatus; g & h, Caloxanthus paraornatus. The eye socket height of many specimens of the two species of Caloxanthus was compared. Scale bar width: 5.0 mm for a & b; 2.0 mm for rest. Source: Klompmaker, Jakobsen & Lauridsen, 2016, BMC Evolutionary Biology (open access)

The incredible biodiversity of fossil decapod crustaceans with ~3500 known species, many of them known from reefs, still results in the description of tens of new taxa each year by professionals and avocational paleontologists, often during collaborative efforts. With such data becoming more and more available, studies on diversity and paleoecology have become more common in recent years. The collection of the UCMP also does hold many, yet to be studied fossil decapods. Research on this exciting group of crustaceans continues!

Terraces through time: Reconstructing fossil beaches in southern California

San Nicolas Island is a strange, far-away place very familiar to a surprising number of Californians. Thanks to Scott O'Dell's Island of the Blue Dolphins, this island — the most remote of California's eight Channel Islands — and it's native Nicoleño people have been engrained into the imaginations of many elementary school children. My own mind was captivated by this story in the fourth grade when I had the opportunity to conduct fieldwork on San Nicolas Island with Daniel Muhs (U.S. Geological Survey) and my adviser Seth Finnegan in July 2015 I was thrilled! Descending from hundreds of feet above the island’s landing strip I was already able to spot the very reason for my fieldwork- Pleistocene fossil beaches.

san-nicolas-ile

San Nicolas Island from above showing its terraced coastline. Marine terraces - records of ancient beaches - are formed by the powerful erosional energy of waves. They are relatively flattened geomorphological features that can serve as convenient pre-leveled platforms for human infrastructure. Hence, San Nicolas Island’s naval base airstrip (the island has been a naval base since the 1940’s) lies atop the island’s seventh terrace, which is the island’s most apparent marine terrace. Photo by D. Günther

Emily standing on a concretion jutting out just below San Nicolas Island’s youngest marine terrace (~80,000 years old).

Emily standing on a concretion jutting out just below San Nicolas Island’s youngest marine terrace (~80,000 years old). Photo by Seth Finnegan

Carved by the powerful energy of ancient waves, over 11 Pleistocene fossil beaches are terraced (hence their geological name "marine terrace") over the landscape of San Nicolas Island's modest 23 square miles. The youngest fossil beach (~80,000 years old) sits just above present-day sea level and the oldest (~1,200,000 years old) lies atop the island's highest elevation. Fossil mollusc shells — very similar to the kinds you find along California beaches today — abound within these marine terraces. Differences in the species compositions and abundance of these mollusc shells record dynamic ecological changes that occurred in response to glacial-interglacial climatic change during the Pleistocene.

Close-up of marine terrace sediments from one of the island’s oldest marine terraces (~1,200,000 years old). Fossil preservation on this terrace is exceptionally good- with original shell color preserved on many specimens.

Close-up of marine terrace sediments from one of the island’s oldest marine terraces (~1,200,000 years old). Fossil preservation on this terrace is exceptionally good- with original shell color preserved on many specimens.

My goal on San Nicolas Island is to collect fossil shells from the lowest three marine terraces — which record the last full interglacial cycle (~120,000 – 80,000 years ago). In particular, I am collecting well-preserved fossil Callianax biplicata (common name, purple olive shell) specimens. Using these fossil shells, I am reconstructing paleoenvironmental conditions during the last interglacial period through the use of stable isotopes. The reason this is possible is because shells grow by semi-continuously depositing layers of calcium carbonate. In the same way scientists use tree rings to chronicle the life a tree, I am using shell growth layers to reconstruct the environmental conditions experienced during the lives of molluscs that lived during the last interglacial period.

After collecting fossil C. biplicata from the terraces of San Nicolas Island, Sydney Minges (UCB Integrative Biology and Earth Planetary Sciences undergraduate student) and I sampled tiny holes along shell growth lines and analyzed these samples for carbon and oxygen stable isotope ratios at UC Berkeley's Center for Stable Isotope Biogeochemistry. Taken together, these isotope ratios can be used to reconstruct changes in seasonal, annual, and inter-annual seawater conditions and temperature during the last interglacial period. When combined with paleoecological species abundance and composition data, these paleoenvironmental data will allow me to test whether species lived in environmental regimes during the last interglacial period that are quite different from conditions they experience today, or whether species have tracked their environmental niches from the last interglacial period to the present day.

emily-collage

Left: Emily sampling fossil C. biplicata (purple olive shell) from a terrace on San Nicolas Island; the majority of white shells in photo are C. biplicata specimens. Photo by Seth Finnegan. Top Right: C. biplicata modern shell (specimen in ~1 cm in length). C. biplicata are the most abundant shells on both modern and Pleistocene beaches in southern California. Bottom Right: Sectioned fossil C. biplicata shell; small holes along right side of shell are spots that are being sampled for stable isotope analysis. Photo by Sydney Minges.

San Nicolas Island is only one of my dissertation study areas. Ultimately, I hope to reconstruct the paleoenvironmental and paleoecological conditions of the last interglacial period along much of the coast of southern California. The uniqueness of this Channel Island's geology and biota will leave a lasting impression. Aside from its extensive marine terraces and rich archaeological record, San Nicolas Island also boasts ghostly caliche forests, adorable dwarfed gray foxes called "island foxes", and some of the most pristine rocky intertidal habitats in southern California. Through my work reconstructing the paleoenvironmental and paleoecological characteristics on San Nicolas Island and elsewhere in southern California, I hope to establish a pre-human baseline for how shallow marine environments respond to climate change.

Emily and Dan Muhs on a marine terrace with abundant Giant Coreopsis plants. Photo by Seth Finnegan.

Emily and Dan Muhs on a marine terrace with abundant Giant Coreopsis plants. Photo by Seth Finnegan.

Island fox on San Nicolas Island. Island foxes are dwarfed relatives of mainland California’s gray fox. Adult island foxes weigh about 4 pounds. Photo curtesy of the Island Conservancy.

Island fox on San Nicolas Island. Island foxes are dwarfed relatives of mainland California’s gray fox. Adult island foxes weigh about 4 pounds. Photo curtesy of the Island Conservancy.

Caliche forest that dates to the Last Glacial Maximum; fossil root casts- many of which are Giant Coreopsis- are visible. Caliche is a sedimentary rock made of calcium carbonate cement. Photo by Emily Orzechowski.

Caliche forest that dates to the Last Glacial Maximum; fossil root casts- many of which are Giant Coreopsis- are visible. Caliche is a sedimentary rock made of calcium carbonate cement. Photo by Emily Orzechowski.

Intertidal sea urchins living in holes bored into Eocene sandstone on San Nicolas Island.

Intertidal sea urchins living in holes bored into Eocene sandstone on San Nicolas Island.

This work is generously supported by grants from The UC Museum of Paleontology, National Sigma Xi, Berkeley Chapter of Sigma Xi, The UC Berkeley Department of Integrative Biology, The Evolving Earth Foundation, The American Philosophical Association, the American Association of Petroleum Geologists, the American Museum of Natural History, and the Geological Society of America.

Our journey from the UCMP to South Africa to study fossil monkeys

Mrs. Charles Camp and her son, Charles Camp Jr., in South Africa (1947-48). Photo by Tesla Monson

Mrs. Charles Camp and her son, Charles Camp Jr., in South Africa (1947-48).

At the time we got involved in what has now become for us - the South Africa project - one of us (Tesla) was soon-to-be a second year graduate student, and the other (Marianne) was about to start her senior year as an undergraduate student here at UC Berkeley.

We began working together in the UC Museum of Paleontology (UCMP) during the summer of 2013, making our way through a massive project and cataloguing exceptional fossil material collected during the UC Africa Expedition of 1947 and 1948. This is the story of that project and the journey that followed.

The UC Africa Expedition

A bit of background for those who may not be familiar with this aspect of UC Berkeley history… as World War II ended, a massive research expedition, dubbed The UC Africa Expedition (UCAE) was just beginning to pick up steam on Berkeley campus. From 1947-1948, the extensive research endeavor became an influential force across numerous fields of study.

During this time, the Expedition also attracted plenty of media attention, resulting in dozens of newspaper articles that were published while the expedition was underway. There were two separate branches of the expedition: the northern branch (led by Wendell Phillips) and the southern branch (led by our very own Charles Camp, director of the UCMP from 1930-49). In addition to all of the fossil material that is now housed in the UCMP, the UCAE brought back an enormous amount of material that, to this day, spans a wide range of libraries, museums, and other repositories on the UC Berkeley campus.

The list below gives you an idea of the amount and diversity of non-fossil materials collected by the expedition and stored outside of the UCMP:

  • The Museum of Vertebrate Zoology has many mammal specimens that were collected during the UCAE by Thomas Larson, ranging in size from bats and elephant shrews to large antelopes.
  • The Phoebe A. Hearst Museum of Anthropology has large amounts of archaeological and ethnographic material, ranging from stone tools to stools, many of which come from the Ovambo people in South Africa. Faunal and archaeological materials collected at the Middle and Late Stone age excavation sites are also stored at Hearst.
  • The Music Library has a series of recordings of local traditional music from South Africa, recorded by famed ethnomusicologists Laura Boulton and Hugh Tracey.
  • The Bancroft Library holds many photographs documenting the life of Charles Camp and his family during the expedition. The library also has many photos of local people and their traditions, as well as the landscapes on which they lived.
  • The UC Botanical Gardens received seeds and living plants that were collected by Robert Rodin, and some of those living plants perpetuate and can still be visited in the African section of the garden.
  • The University and Jepson Herbaria also have a considerable number of specimens, as well as Robert Rodin’s field notes and correspondences. A complete list of everything collected can be found in his preserved field notes.
Fossil primates at the Evolutionary Studies Institute in Johannesburg, South Africa. Photo by Tesla Monson

Fossil primates at the Evolutionary Studies Institute in Johannesburg, South Africa. Photo by Tesla Monson

Following our curatorial and historical work with this collection, we narrowed our focus to the Plio-Pleistocene fossil assemblage. For a more extensive historical account of the UCAE, and faunal and locality details for the Plio-Pleistocene fossil assemblage, see our recently published paper in PaleoBios (Monson TA et al. 2015).

As we turned our attention to the Plio-Pleistocene assemblage, two undergraduate students who were involved in the curatorial process took on independent projects. Sandy Gutierrez examined the ostrich eggshells and quantified interspecific variation in shell characteristics. And Bogart Marquez, emphasizing the bovids, studied the faunal composition of the different caves in order to make inferences about deposition, taphonomy, and predatory behavior in and around the caves. Both Sandy and Bogart presented their results at the Society for the Advancement of Chicanos and Native Americans in Science (SACNAS) conference in Spring 2014.

We also dug into the primate material with the goal of assessing the alpha-taxonomy of the UCMP specimens. This part of the assemblage includes specimens that have been very influential throughout the historical course of monkey taxonomy, and many are still quite controversial. We tag-teamed the project, with Marianne working through the mandibular material as part of her honors thesis and Tesla examining the cranial material. Two then-undergraduates in the Hlusko Lab also worked with the primate material: Kevin Roth examined the juvenile craniodental specimens and Sandy Gutierrez looked at the postcranial material.

Tesla poses for a selfie with Sediba, a South African australopithecine.

Tesla poses for a selfie with Sediba, a South African australopithecine.

The whole group (Tesla, Marianne, Sandy, Bogart, and Kevin) presented our results during a UCMP Fossil Coffee seminar back in Spring 2014 and at the American Association of Physical Anthropologist (AAPA) meeting in April 2014. Fortuitously, our Fossil Coffee presentation was attended by Dominic Stratford, a visiting South African geoarchaeologist from University of the Witwatersrand in Johannesburg, South Africa. Dominic has become an invaluable collaborator on the multiple monkey projects that evolved out of our initial work in the UCMP and that are still ongoing. These projects led us (and our advisor – Leslea Hlusko) on the next leg of our journey. In summer of 2015, we journeyed to South Africa to collect more monkey data, a trip graciously funded by a grant from the Palaeontological Scientific Trust and two Desmond C. Clark fellowships from the Human Evolution Research Center at UC Berkeley.

South Africa

Data Collection

hominid-vault

The entrance to the hominid vault at the Evolutionary Studies Institute in Johannesburg, South Africa. Photo by Tesla Monson

During our time in South Africa, we studied monkey cranial and dental specimens at University of the Witwatersrand in Johannesburg and at the Ditsong Museum of Natural History in Pretoria. While it was an incredible experience and opportunity, we couldn’t help but feel like some of the days stretched on forever - we were in the museum for nine hours at a time, and some days it felt like all we had to eat was chicken, chicken, and more chicken.... which, according to Dominic, actually qualifies as a vegetable in South Africa. Tesla had to tape her thumbs, followed by her index fingers, followed by almost every other finger, to prevent caliper burn, and Marianne had to squint out of one eye for two weeks straight. (But we made sure to take semi-frequent jellybean breaks to preserve our sanity, thanks Leslea!) It may not have felt like it while we were squinting at calipers and working through the burn, but the amount of data collected made the long hours very worthwhile. Not to mention that we were in good company while at University of the Witwatersrand, since original South African hominid fossil material, including the Taung child, Malapa and Sediba, were displayed (complete with spotlights!) in the vault where we were working.  Yes, that’s correct – a vault. We were stationed in the Hominid Vault at the Evolutionary Studies Institute, a very serious room fully equipped with a 6-foot vault door with rotating handle, locked by a 4-inch key that looked a hundred years old. Serious business indeed.

When we weren’t measuring and photographing monkeys, we got to take tours of some of the famous cave sites, and wow were they incredible! We also got to meet paleoanthropologist Ron Clarke and see the “Little Foot” hominid remains, which are still in the process of being prepared – an opportunity that has only been offered to only a handful of people in the world. Hey, it pays to be a paleontologist!

The surface layers at Sterkfontein Cave in the Cradle of Humankind, South Africa.

The surface layers at Sterkfontein Cave in the Cradle of Humankind, South Africa.

Marianne Brasil, Leslea Hlusko and Dominic Stratford underground in Sterkfontein Cave, South Africa. Photo by Tesla Monson

Marianne Brasil, Leslea Hlusko and Dominic Stratford underground in Sterkfontein Cave, South Africa. Photo by Tesla Monson

Marianne Brasil and Tesla Monson in Sterkfontein Cave. Photo by Leslea Hlusko.

Marianne Brasil and Tesla Monson in Sterkfontein Cave. Photo by Leslea Hlusko.

Famed anthropologist Ron Clarke holding the cranium of “Littlefoot,” a recently discovered South African hominid. Photo by Tesla Monson

Famed anthropologist Ron Clarke holding the cranium of “Littlefoot,” a recently discovered South African hominid.

In the evenings while we were in Pretoria, we ate our delivery dinners (mostly chicken) on the floor of Leslea’s room, and sometimes it was in candlelight because of this odd, but normal “it’s just a part of life here,” load-shedding phenomenon that causes small-scale city blackouts. This was only one of the quirks of South Africa that we encountered. Some others included…

  1. No picture on a restaurant menu was ever actually replicated in person. Dishes served were a surprise every time!
  2. The GPS had a fondness for telling us to “Turn left at unknown road”, as if that’s helpful.
  3. On more than one occasion we had to let baby goats get out of the road before we could continue on our way. Ok, that last one wasn’t so bad… 🙂

Exploring Africa

Following all of the hard work of data collection, we finally got to explore South Africa. We set off - with Tesla driving on the wrong side of the road, in the wrong side of the car, and with the clutch on the left – to our rental at “Zonk Lake”, which was a lone cottage on a tiny lake. So, we basically rented a lake. It’s not often you get to take a romantic vacation with your labmate…

Giant’s Castle reserve in the Drakensberg. Photo by Tesla Monson

Giant’s Castle reserve in the Drakensberg. Photo by Tesla Monson

During the couple of days that we were in the Drakensberg region, we went out to enjoy the natural beauty of the landscape as well as the San petroglyphs of Giant’s Castle. We were also able to see our study organisms in their (not so) natural habitat when we ran into chacma baboons in a park area while out for a hike. On a more serious note, it was an honor and a privilege to tour the Apartheid Museum and the Nelson Mandela Memorial while we were in KwaZulu-Natal, and we highly recommend it to any visitors in the area.

San petroglyphs on the rocks at Giant’s Castle, South Africa. Photo by Tesla Monson

San petroglyphs on the rocks at Giant’s Castle, South Africa. Photo by Tesla Monson

Chacma baboons (Papio hamadryas) eating grass at the Giant’s Castle resort in the Drakensberg. Photo by Tesla Monson

Chacma baboons (Papio hamadryas) eating grass at the Giant’s Castle resort in the Drakensberg. Photo by Tesla Monson

A panel from the Apartheid Museum at the Mandela Capture Site near Howick in KwaZulu-Natal. Photo by Tesla Monson

A panel from the Apartheid Museum at the Mandela Capture Site near Howick in KwaZulu-Natal. Photo by Tesla Monson

Taking the kayak out on Zonk Lake. Photo by Tesla Monson

Taking the kayak out on Zonk Lake. Photo by Tesla Monson

Marianne practices the art of braai, South African barbeque. Photo by Tesla Monson

Marianne practices the art of braai, South African barbeque. Photo by Tesla Monson

During the evenings, we caught Marianne up on the childhood media she never had, pulling from the random assortment of VHS cassettes that someone left on the shelf of our Zonk cabin: Casper, Mask of Zorro, Daredevil – all the greats. We also went kayaking in the early morning, and had true South African “braai” (AKA barbeque) in the evenings. You know what they say — when in South Africa...

After Zonk Lake, we left early for the nine-hour drive to Kruger National Park. Luckily, awesome street signs and plenty of bad jokes from Tesla dotted our journey. When we finally made it to Kruger, we quickly loaded up on snacks, brewed our coffee at 5:30 in the morning, and set out to drive through the park. The first thing we saw was a rhino (spotted by Tesla). We had heard that some people never see anything, so the mood was gleeful right way.

Then, maybe 20 meters down the road past the rhino, we saw an elephant (spotted by Marianne). The day just got better after that. We saw giraffes, lions, hippo, impala, hyena, kudu, crocodiles, warthogs, TONS of birds, baboons, buffalo, zebra, mongoose, and many other cool critters – including loads and loads of baby animals. Oh the babies!

A white rhinoceros (Ceratotherium simum) in Kruger National Park, South Africa. Photo by Tesla Monson

A white rhinoceros (Ceratotherium simum) in Kruger National Park, South Africa. Photo by Tesla Monson

Southern ground hornbills (Bucorvus leadbeateri) in Kruger National Park, South Africa. Photo by Tesla Monson

Southern ground hornbills (Bucorvus leadbeateri) in Kruger National Park, South Africa. Photo by Tesla Monson

Giraffes (Giraffa camelopardalis), impala (Aepyceros melampus) and warthogs (Phacochoerus africanus) at a watering hole in Kruger National Park, South Africa. Photo by Tesla Monson

Giraffes, impala and warthogs at a watering hole in Kruger National Park, South Africa.

An African elephant (Loxodonta africana) in Kruger National Park, South Africa. Photo by Tesla Monson

An African elephant (Loxodonta africana) in Kruger National Park, South Africa. Photo by Tesla Monson

A baby spotted hyaena cub (Crocuta crocuta) in Kruger National Park, South Africa. Photo by Tesla Monson

A baby spotted hyaena cub in Kruger National Park, South Africa. Photo by Tesla Monson

A zebra (Equus burchelli) in Kruger National Park, South Africa. Photo by Tesla Monson

A zebra in Kruger National Park, South Africa. Photo by Tesla Monson

A warthog (Phacochoerus africanus), also known as “Radio Africa,” runs with its tail up. Photo by Tesla Monson

A warthog  also known as “Radio Africa,” runs with its tail up. Photo by Tesla Monson

A vervet monkey (Chlorocebus pygerythrus) hangs out near a rest area in Kruger Park, South Africa. Photo by Tesla Monson

A vervet monkey hangs out near a rest area in Kruger Park, South Africa. Photo by Tesla Monson

Overall, our trip was really productive, and we had a really excellent time. We collected lots of data, generated many hypotheses we’re currently testing, and raised questions that we are working to answer. We will both be presenting at the AAPA meeting in April 2016 on some of our findings from the data collected on this trip. We also got to know each other really, really well and we’re both happy to say, we’d go on another data collection trip to Africa together anytime!

The sun sets over Kruger National Park, South Africa. Photo by Tesla Monson

The sun sets over Kruger National Park, South Africa. Photo by Tesla Monson

Solutions to climate change inspire French film

Tony and Liz by billboard advertising the movie Demain, in Paris.

Tony and Liz by a billboard advertising the movie Demain, in Paris.

In December 2015 UCMP faculty curator Tony Barnosky and Stanford paleoecologist Liz Hadly attended The United Nations Conference on Climate Change to premiere a movie opening in Paris. The movie, Demain, was inspired by the 21-authored study that produced a 2012 Nature paper on tipping points. The film opens with Tony and Liz summarizing global change issues facing the world today.

Tony states, "the movie is all about solutions and is very uplifting." It features solutions being implemented in San Francisco and Oakland, in addition to many other places around the world. It was produced by and stars Mélanie Laurent, a well-known French actress, and Cyril Dion. The movie is getting rave reviews in Europe and the English version Tomorrow (see video) is anticipated to be released in the USA in the spring.

Tony and Liz (far left) with cast members of the film, Demain.

Tony and Liz (far left) with cast members of the film, Demain.

The Anthropocene has come of age

industryResearch by Faculty Curator and Professor Tony Barnosky and the Anthropocene Working Group continues to support the strong need for designating a distinct geological epoch, the Anthropocene. Landscape-altering human activities leave behind distinctive evidence (plastics, aluminum, concrete, black carbon, among others) in the sedimentary record. The group has received widespread media attention and recent articles in the New York Times, Los Angeles Times, and Washington Post demonstrate the extent to which interested in topic crosses academic and non-academic boundaries.

On a related topic Tony is the co-author on a research article by Ceballos et al, 2015, on the sixth mass extinction, and it was the #3 most popular academic paper (and shared and read outside and within academia) published in 2015 according to Almetrics.  It was also #15 in the top 100 Science papers listed in Discover Magazine.

 

Assistant director reunites with UCMP alumni in Ethiopia to investigate Mesozoic ecosystems

Assistant director Mark Goodwin is in Ethiopia for several weeks as part of a collaborative project with UCMP alums Greg Wilson (University of Washington) and Randall Irmis (Utah). Together with colleagues from the University of Oklahoma, Addis Ababa University, and Mekelle University in Ethiopia, the team is investigating non-marine Mesozoic ecosystems from the Northwestern Plateau, Ethiopia.

Mark reports "we had great success in the Late Jurassic units and it is gratifying working with Ethiopian students and staff from the Earth Sciences Dept at Addis Ababa University. In the late Jurassic Mugher Mudstone, in addition to turtles, fish, croc teeth and verts, we found a partial crocodile skull with brain case and parietals, partial lower jaw, many allosauroid-like theropod teeth at almost every site and finally some large dinosaur bones - still fragmentary but we're getting there - and very rich micro vertebrate localities that just have to have mammals - collected some bags of sediment from each. Working with the Earth Sciences Dept at Addis Ababa University has been great and hopefully a model for future work and lots of opportunity for collaboration, including informal science."

This collaborative research project, "US-Ethiopia planning visit for the investigation of non-marine Mesozoic ecosystems from the Northwestern Plateau, Ethiopia," is funded by the National Science Foundation grant NSF-CNIC-1444238.

Group pic at the top of the flood basalts that cap the steep sided canyons of the Blue Nile Gorge, near Fiche, Ethiopia. From L to R: Tadesse Berhanu (PhD student, Oklahoma State); Connie Rasmussin (PhD student, Utah); Keegan Melstrom, PhD student, Utah); Randy Irmis (Utah); Greg Wilson (Washington); Mark Goodwin (UCMP); Dave Demar (Postdoc, Washington); Million Mengesha and Samuel (Earth Sciences Dept., Addis Ababa University).

Group pic at the top of the flood basalts that cap the steep sided canyons of the Blue Nile Gorge, near Fiche, Ethiopia. From L to R: Tadesse Berhanu (PhD student, Oklahoma State); Conny Rasmussin (PhD student, Utah); Keegan Melstrom, PhD student, Utah); Randy Irmis (Utah); Greg Wilson (Washington); Mark Goodwin (UCMP); Dave Demar (Postdoc, Washington); Samuel Getachew and Million Mengesha  (Earth Sciences Dept., Addis Ababa University).